

Rugged voltage output inclinometer

General Description

OIAC5 inclinometers are available in two-axes or single-axis version. Two-axes versions can measure tilt angles up to ± 60 degrees in the pitch and roll axis. Single-axis versions can measure tilt angles up to 360 degrees. Output signal is 0.5-4.5 Volt and can be extended up to 0-5 Volt on request.

The compact sturdy anodized metal enclosure can withstand shocks and vibrations, while the filling resin makes OIAC5 inclinometers waterproof and dustproof.

The MEMS transducer raw signals are filtered, conditioned, and elaborated with algorithms aimed for good noise rejection and measure stability. On request, the digital filter can be factory-adjusted for adapting the sensor's response time to customer needs.

The internal protection circuits make these inclinometers electrically robust to withstand overvoltage, outputs lines overload and cable inversions conditions.

OIAC5 inclinometers can be requested with different options in connectors, cable length, redundancy, or customer-specific device configurations.

The redundant variants combine the advantage of using two inclinometers in the same size of one.

For very high accuracy demanding applications, temperature-compensated variants can be requested.

Applications

Mobile and fixed cranes

Aerial platforms

Telehandlers

Drilling rigs

Earth moving machines

Agricultural machines

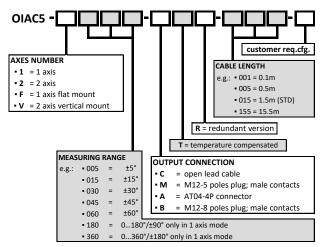
Forestry machines

Mowers inclination control

Levelling control

Pin Functions

OIAC5 inclinometers are available with different cable and connector options. Redundant versions are available only with cable. For more details, see pinout information on page number 4.



Images are for illustration purpose only and may not represent exactly the product in all the details

Features

- Rugged device: fully metal case filled with protective resin
- Medium accuracy (typ ±0.20 deg)
- Very High MTTF @ 12V and 24V
- Single axis or dual axes version
- Different angle ranges
- Flat or vertical mounting version
- Operating temperature -40°C to +85°C
- IP67 protection grade
- Customizable on customer request
- Fully redundant version available

Ordering information

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
Ts	Storage Temperature	-40	85	°C
T _A	Operating Temperature Range	-40	85	°C
Vcc	Supply Voltage Range (DC voltage)	7	30	V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

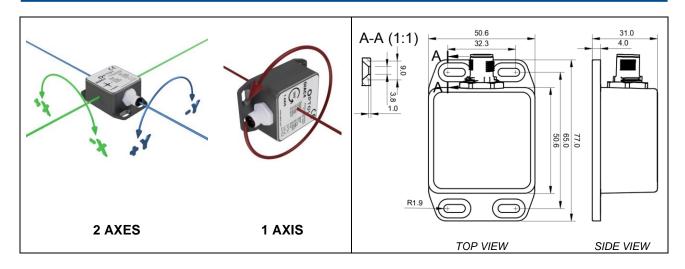
ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{cc}	Supply Voltage Range	-40 < T _A < +80	7	12/24	30	V
I _{cc}	Current consumption	average value non-redundant version		7.5	10	mA
Rg₁	Range of measurement	Single-Axis Versions	±10	±180	±180	deg
Rg₂	Range of measurement	Dual-Axes Versions	±10	±30	±60	deg
Res	Output voltage resolution			1.67		mV
Α	Accuracy	Rg ₁ =±180°; Rg ₂ <+/-30°		±0.20	±0.50	deg
X _A	Cross Axis Error			±1.0		% FS
D _T	Temperature drift			± 0.008		deg/°C
R_L	Load resistor		20			kΩ

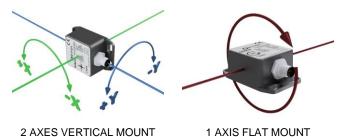
RELIABILITY PARAMETERS

All MTTF calculations are made according to Siemens SN 29500.


Symbol	Parameter	Conditions	Value	Unit
	Mean time to failure 2 axes	Environment GM; T _A = 40°C; V _{CC} = 12V	350	
MTTF	Mean time to failule 2 axes	Environment GM; T _A = 40°C; V _{CC} = 24V	301	.vooro
IVIIIF	Many time to failure 4 puis	Environment GM; T _A = 40°C; V _{CC} = 12V	429	years
	Mean time to failure 1 axis	Environment GM; T _A = 40°C; V _{CC} = 24V	358	
DC	Diagnostic coverage		None	-
S	Structure		Not redundant	-

For redundant versions, the reliability parameters will be calculated, according to the desired configuration.

MECHANICAL CHARACTERISTICS AND DIMENSIONS


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
W	Width			50.6		mm
L	Length			77.0		mm
Н	Height			31.0		mm
Wt	Weight	non-redundant; M12 connector additional cable	150	180 75	220	g g/m
CL	Cable standard length			1.5		m
Cø	Cable outer diameter			6.7		mm
Cs	Cable connection styles	non redundant (6 conductors cable) redundant (12 conductors cable)		(1 axis) or 4 (1 axis) or 8	` '	

Flat and Vertical Mounting Version

To reduce the mounting complexity and match space and position constraints for sensor installation, the single-axis flat-mount version and the dual-axis vertical mount OIAC5 versions are available.

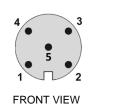
Mounting

- The highest accuracy is achieved using 4 flat head countersunk screws with a maximum thread diameter of 4mm externally centered in the 4 slot-holes.
- For 1-axis models, the sensor's mounting surface must be vertical. The measured angle value increases with clockwise rotation. Zero position with left-oriented connector (top view).

1 AXIS ZERO POSITION AND DIRECTION

- For 2-axes models, the sensor's mounting surface must be flat and perfectly level.

- For heavy vibrating applications, inclinometers isolation from vibration is required; if not the measured angles may be inexact.
- Strong accelerations applied to the inclinometers leads to inexact measure values.


Pin Functions

CABLE VERSION OIAC5-XYYY-C

No	Color	Name Function		
1	BLACK	IU	IU Internal use only (leave it open if present)	
2	BLACK	VCC Positive Power Supply		
3	BLACK	GND Ground / 0V / V-		
4	BLACK	OUTX X-axis output for 2 and 1-axis devices		
5	BLACK	OUTY	Y-axis output for 2 axes devices	


M12-5 POLES MALE PLUG CONNECTOR VERSION: OIAC5-XYYY-M *

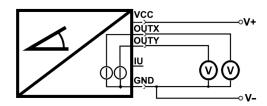
No	Color	Name	Function	
1		VCC	Positive Power Supply	
2		GND	Ground / 0V / V-	
3		OUTX	X-axis output for 2 and 1-axis devices	
4		OUTY	Y-axis output for 2 axes devices	
5		IU	Internal use only (do not connect)	

M12-8 POLES MALE PLUG CONNECTOR VERSION: OIAC5-XYYY-B

No	Color	Name	Function
1		VCC	Positive Power Supply
2		NC	Not connected
3		NC	Not connected
4		NC	Not connected
5		GND	Ground / 0V / V-
6		OUTX	X-axis output for 2 and 1-axis devices
7		OUTY	Y-axis output for 2 axes devices
8		IU	Internal use only (do not connect)

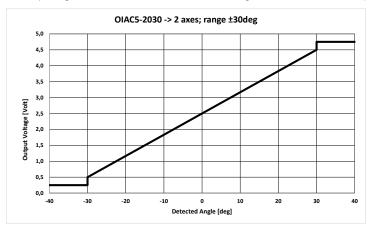
REDUNDANT VERSION OIAC5-XYYY-CR

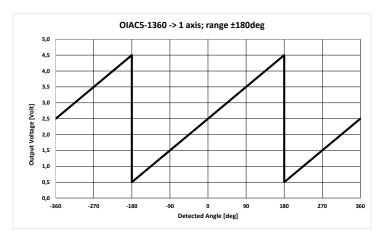
No	Color	Name	Function
1	GREY	IU1	CH1 Internal use only (leave it open if present)
2	RED	VCC1	CH1 Positive Power Supply
3	BLACK	GND1	CH1 Ground / 0V / V-
4	PINK	OUTX1	CH1 X-axis output for 2 and 1-axis devices
5	PURPLE	OUTY1	CH1 Y-axis output for 2 axes devices
6	YELLOW	IU2 CH2 Internal use only (leave it open if present)	
7	WHITE	VCC2	CH2 Positive Power Supply
8	BLUE	GND2	CH2 Ground / 0V / V-
9	BROWN	OUTX2 CH2 X-axis output for 2 and 1-axis devices	
10	GREEN	OUTY2	CH2 Y-axis output for 2 axes devices



4 http://www.optoi.com/

^{*} Different pinout or cable plus M12 connector variants are available on request.


Electrical Connections


CONNECTIONS

OUTPUT CHARACTERISTICS

Fully redundant devices have two output signals available for each axis. These signals match themselves (no cross-signal)

