

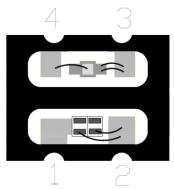
OIER3

General Description

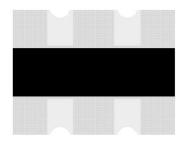
The OIER3 reflective sensor consists in an infrared emitting diode and a double NPN silicon phototransistor. The components together are mounted side by side in a plastic black SMD housing. The black package avoids light reflections, noise and behaves as a barrier between led and photoreceivers.

The phototransistors respond to radiation emitted from the diode only if a reflective object surface is within the field of view of the detector.

Applications


Scanning

Automated transaction systems


Metering systems

Motion control systems

- Non invasive medical equipment
- Low distance metering

Bottom view

Features

- Unfocused for sensing diffused surface
- SMT package
- High uniformity
- Very stable measurements
- High gain phototransistor
- No contact surface sensing
- Low profile
- Low cost
- Milling on the backside for side PCB mounting

Pin Functions

No.	Name	Function
1	С	Phototransistor Collector
2	E	Phototransistor Emitter
3	А	LED Anode
4	К	LED Cathode

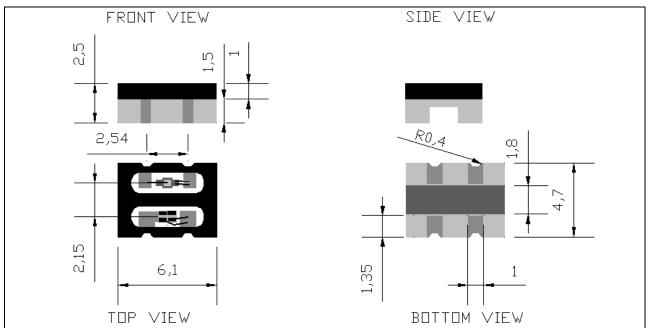
Ordering information

OIER3

Reflective Sensor with Infrared LED

BSOLUTE MAXIMUM RATINGS								
Symbol	Parameter	Min	Max	Unit				
T _A	Operating Temperature Range	-25	85	°C				
Ts	Storage temperature	-40	85	°C				
Tsol	Lead temperature (solder) s		270	°C				
	Emitter							
I _F	Continuous forward current		50	mA				
Vr	Reverse voltage		4	V				
	Receiver							
V_{CE0}	Collector-emitter voltage		30	V				
Pd	Power dissipation		100	mW				
lc	Collector DC current		30	mA				

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.


ELECTRICAL/OPTICAL CHARACTERISTICS

 $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Emitter					
V _F	Forward voltage	I _F =10μΑ		1.1		V
		I _F =20mA		1.3		V
λ_{p}	Peak wavelength	I _F =20mA		880		nm
Δλ	Spectral bandwidth at 50%	I _F =20mA		27		nm
	Receiver					
I _{CE0}	Collector dark current	V _{CE} =10V		10	100	nA
V _{(BR)CE0}	Collector-emitter breakdown voltage		50			V
Tr	Rise time	RI=1k Ω V _{CE} =5V Ic=1mA		30		μS
Tf	Fall time	RI=1k Ω V _{CE} =5V Ic=1mA		40		μs
Hfe	Phototransistor's gain		500	1000	1500	
	Coupled					
lc	Collector current (reflective surface @ D=1mm)	V _{CE} =5V I _F =20mA	1	3		mA
V _{Cesat}	Collector-emitter saturation voltage	I _F =20mA V _{CE} =5V D=1mm		0.175	0.3	V
D	Optimal distance to reflective surface*			1.1		mm

MECHANICAL CHARACTERISTICS

Unit: mm Tolerance: ± 0.2 mm

* See Figure 1

TYPICAL PERFORMANCE CURVES

Figure 1 – Normalized collector current VS Distance to reflective surface [mm] §

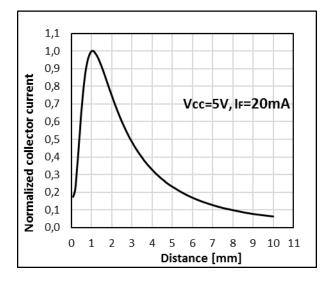
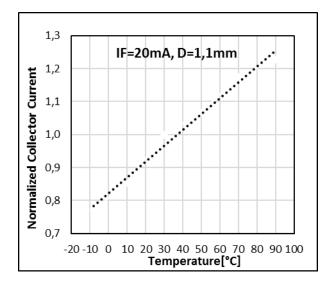
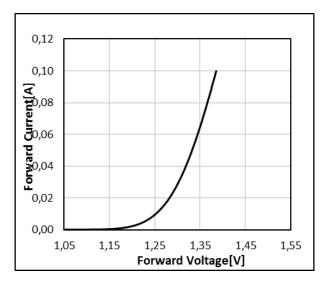




Figure 2 – Normalized collector current (@Ta=30°C) typical drift VS temperature [°C]

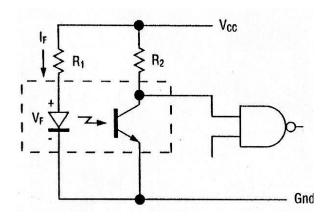

OPTO

Figure 3 – Forward led current [mA] VS Forward led voltage [V] §

§ Ta=25°C unless otherwise noted

TYPICAL APPLICATION INTERFACE

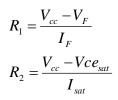


Figure 4 – Digital interface

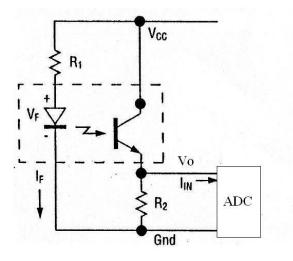
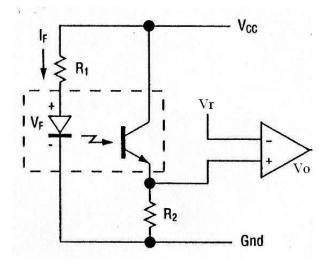




Figure 5 –Linear signal conversion to digital

$$R_1 = \frac{V_{cc} - V_F}{I_F}$$
$$R_2 = \frac{V_{cc} - Vce}{I_{R2}}$$

 I_{IN} input current required for AD conversion Vo output analog voltage (the voltage gain is given by R2 and I_F)

$$R_{1} = \frac{V_{cc} - V_{F}}{I_{F}}$$

$$R_{2} = \frac{V_{cc} - Vce}{I_{R2}}$$

$$Vo = Aol * (V_{R2} - Vr)$$
Vr voltage threshold

Vo voltage digital output

