

OIA4160-ST

in die cast metal ST case

General Description

Optical receiver based on a photoASIC device made by a CMOS microelectronic silicon photodiode, with integrated electronics for standard Open Collector output.

The photoASIC has been developed for industrial environment with high resolution CMOS technology, in order to work in fieldbus at standard 16 Mbps.

The optimization of antireflective coating permits to have very good optical sensitivity with low power of the incoming light.

The main advantage of this digital optical receiver, in comparison to the standard ones, is the robustness against mechanical stresses, electrostatic discharges and electromagnetic environment.

The main technical specifications, like optical sensitivity, voltage and current supply, operating frequency and optical dynamic range, are well improved for this class of optical receivers for industrial environment.

The device is protected with two packages: a standard TO18 full metal, plus an ST metal connector.

Applications

Optical Fiber Datacom Industrial LAN and FIELD BUS

Optical Barriers

Optical Receivers, Light Sensors

Home and Building Automation

Opto isolation / Opto coupler

General Applications for Light Detection

Features

- Very High Optical Sensitivity
- Wide Dynamic Range
- Data Rate up to 16Mbps
- Working also in DC mode and low frequency
- High robustness (double metal package)
- Open collector output
- 100% manufactured in Europe

Pin Functions

No.	Name	Function
1	VCC	5V Power Supply (marked)
2	GND	Ground
3	OUT	Open Collector Output

Ordering information

OIA4160-ST

Optical Receiver Based on CMOS PhotoASIC with open collector Output in ST Metal Case

Mark=pin #1

Rev. N: 12.2022

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
T _A	Operating Temperature Range	-40	85	°C
Ts	Storage Temperature	-40	85	°C
T _{Sol}	Lead Temperature (solder) 10s		260	°C
Vc	Supply Voltage	4.5	5.5	V
Vo	Output Voltage	-0.5	20	V
PD	Power Dissipation @ T _A =25°C		250	mW
MSL	Moisture Sensitive level		1	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_{\text{A}}{=}25^{\circ}\text{C},$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{ON}	Supply Current			35	45	mA
S	Minimum Optical Sensitivity (1)	Peak		-28	-25	dBm
λ_{50}	Spectral sensitivity range	At 50%	500		975	nm
P _{RmaxL}	Max. received power/optical level LOW	Dc mode			-31	dBm
P_{RmaxH}	Max. received power/optical level HIGH	Dc mode			-5	dBm
I _{он}	High level Output Current	Vo=18V , Po < -40dBm RI=560 Ohm			10	uA
Vol	Output voltage low				0.5	V

(1) Peak sensitivity, measured with 2.5MHz signal, 200 μ HCS 1m fiber, λ =850nm, duty cycle=50% PWD<50%

AC SWITCHING CHARACTERISTICS

 $T_A=25^{\circ}C$, f=2.5MHz, Vo = 0.5 to 2.4V, RI=560 Ω unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _R	Rise Time (from 10% to 90%)	CI=3.9pF Pin=-10uW		6	9	ns
t _F	Fall Time (from 90% to 10%)	CI=3.9pF Pin=-10uW		7	10	ns
F	Operating Frequency ⁽²⁾		0		16	Mbps
PWD	Pulse Width Distortion (3)	6.3uW < Pin pk < 300uW	-25		+25	%
t _{PD}	Propagation delay (P _{DLH} P _{DHL})	with OIL4060-ST led at 10mA, 870nm, HCS 200um		70	150	ns

(2) 16 Mbps = 8 MHz

(3) Pulse width distortion is the difference between high and low state: $PWD = PW_{high} - PW_{low}$

RECOMMENDED CIRCUIT AND WAVEFORM DEFINITIONS

MECHANICAL DIMENSIONS

Units=mm

