

3-Axis 3g accelerometer

General Description

OIAC6 is a +/-3g tri-axial accelerometer with buffered voltage outputs. The self-test input line can be used to check the accelerometer's correct functionality.

OIAC6 accelerometers are available in three variants. Each variant has a different internal filter bandwidth to match application needs for sensors frequency response.

The compact sturdy anodized metal enclosure can withstand shocks and vibrations, while the filling resin makes OIAC6 accelerometers waterproof and dustproof.

The internal protection circuits make these accelerometers electrically robust to withstand overvoltage and outputs lines overload.

Wind turbine monitoring Machine vibration monitor Shock monitoring Industry 4.0

Cable color

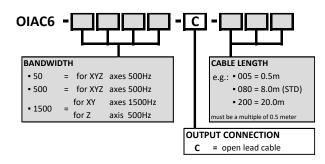
Pin Functions

The OIAC6 connection cable is 8 meters long. It has 6 conductors plus shield. Cable length or conductors termination customizable on request.

Function

Yellow-Green	AGND	Ground
Black 1	V+	Power supply
Black 2	X	X-axis output
Black 3	Υ	Y-axis output
Black 4	Z	Z-axis output
Black 5	ST	Self-Test input
Shield	SH	Shield

Name



Images are for illustration purpose only and may not represent exactly the product in all the details

Features

- Three axes
- Internal filter available with 3 bandwidth
- Buffered outputs
- Self-test function
- Rugged device: fully metal case filled with protective resin
- Resistant to electrical disturbs and transients
- Power supply inversion internal protection
- Operating temperature -40°C to +85°C
- IP67 protection grade

Ordering information

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
Ts	Storage Temperature	-40	85	ပ္
T _A	Operating Temperature Range	-40	85	°C
V _{CC}	Supply Voltage Range (DC voltage)	6	28	V

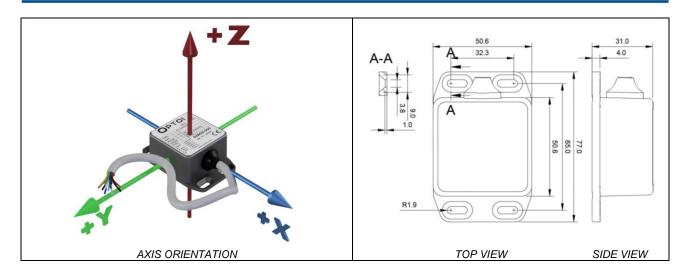
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vcc	Supply voltage range		7	12	24	V
I _{cc}	Current consumption	average value $V_{CC} = 12V; R_{Lxyz} = 100k\Omega$		1.5		mA
N_{AX}	Axis number			3		-
R	Range			±3		g
Ss	Sensitivity		290	330	360	mV/g
7	Zero BIAS (0g offset)	X-axis and Y-axis acceleration = 0g	1,35	1,5	1,65	V
Z_{B}		Z-axis acceleration = 0g	1,2	1,5	1,8	V
DW	Laterral Charles and Salde	X-axis and Y-axis			1500	Hz
BW	Internal filter bandwidth	Z-axis			500	Hz
R_L	Voltage outputs load resistor		20	100		kΩ
ST _{IN}	Self-test input		1		24	V
ST _{CX}	X-axis output change	ST _{IN} = V _{CC}		-325		mV
ST _{CY}	Y-axis output change	ST _{IN} = V _{CC}		+325		mV
ST _{CZ}	Z-axis output change	ST _{IN} = V _{CC}		+550		mV

RELIABILITY PARAMETERS


All MTTF calculations are made according to Siemens SN 29500.

Symbol	Parameter	Conditions	Value	Unit	
MTTF Mean time to failure	Agan time to failure	Environment GM; T _A = 40°C; V _{CC} = 12V	231		
	Environment GM; T _A = 40°C; V _{CC} = 24V	213	years		
DC	Diagnostic coverage		None	-	
S	Structure		Not redundant	-	

MECHANICAL CHARACTERISTICS AND DIMENSIONS

Symbol	Parameter	Conditions	Min Typ Ma	x Unit
Wdt	Width		50.6	mm
Lgt	Length		77.0	mm
Hgt	Height		31.0	mm
Wgt	Weight		200	g
CL	Cable standard length		8	m
Cø	Cable outer diameter		7.6	mm
Cs	Cable connection styles		6 conductors + shield	-

Mounting

Mount the OIAC6 accelerometer using 4 flat head countersunk screws with a maximum thread diameter of 4mm, externally centered in the 4 slot-holes.

Electrical Connections

CONNECTIONS

The diagram above is for illustration purposes only.

Internal drawings of the device are schematized as logic functions and may not represent the physical implementation

SELF-TEST

The ST input signal controls the OIAC6 self-test function for checking accelerometer functionality. When this pin is driven to V_{CC} the internal transducer detects an acceleration change on its three sensing axes. This acceleration change is -1.08g in the X-axis, +1.08g on the Y-axis, and +1.83g on the Z-axis. ST line can be left open-circuit or connected to V- (AGND) line in normal use.

