

OIS25

General Description

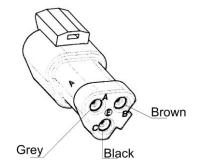
OIS25 is a patented smart optical device, which is usually combined with a hydraulic steering cylinder. The main application is on rough terrain machines, to detect when the wheels are correctly aligned. The alignment occurs when the sensor detects a different refraction index zone, which is marked on the hydraulic cylinder's rod.

The product is based on reflective sensor as input stage, a computing unit (microprocessor device) and an output stage with high side driver, which can deliver up to 150mA.

The sensor includes a lot of "smart" functions and special algorithms that allow to continuously adapt the device to the wear of the system during the time, improve the life of the system, guarantee the high reliability (MTTF = 103 years at 24V) and be able to work in the harsh environment (temperature variations, rod wear, presence of electromagnetic disturbs, presence of humidity, shocks and vibrations). In addition, the particularity of this serie is that it provides diagnostic functions to auto detect possible failures. At every boot-up the OIS25 can collect information about the functioning of the logic unit, of the output stage and of the sensor module.

Applications

Steering machines


- Surface cleaning machines
- Rough terrain machines
- Road building machines

Construction machines

Agricultural machines

Logistic machines

Loaders

Features

- Especially designed for earth moving environment
- Diagnostic functions onboard
- MTTF = 103 years @ 24V
- Meets all ISO 7637-2 and ISO16750-2 requirements, including Load Dump at max levels
- Smart interface and smart algorithm
- High input voltage range
- High temperature range
- High current output
- IP67
- Inversion of polarity protection

Name

Vcc GND

OUT

Overload protection

OIS25

Cable color Brown Black Grey

Function Power Supply Ground Output (PNP)

Pin Functions

Ordering Information

OIS25-DT-CE03

With a 60cm cable + DT04-3P-CE03

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Мах	Unit
Ts	Storage Temperature	-40	85	°C
T _A	Operating Temperature Range	-20	80	°C
Vcc	Supply Voltage Range		30	V
lo	Max output current (depending on ambient temperature)	-	150	mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

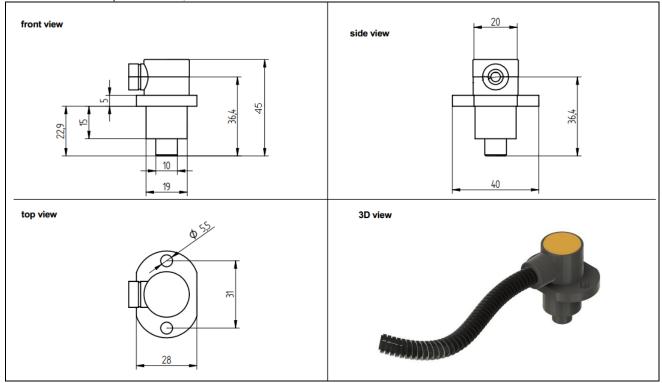
ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{cc}	Supply Voltage Range	battery	8,5	24	30	V
Vj	Jump start voltage allowable				36	V
OL	Overload protection (output shutdown)	8V < Vcc < 30V	-	-	340	mA
lcc	Device current consumption	No load, whole voltage and tem-		15	30	mA
ILOAD	Load current	8V < Vcc < 30V	1	100	150	mA
Voh	Output voltage high	8V < Vcc < 30V	Vcc-0.7		Vcc	V
V _{OL}	Output voltage low	$Vcc = 30V R_L < 30k\Omega$	0		700	mV
R	Min detection range	L _100mA	3			ms
ĸ	Max detection speed (mark width of 3mm)	– I _{LOAD} =100mA			1	m/s
t _{D1}	Setup and diagnostic functions	At the Boot-Up	590	600	610	ms
t _{D2}	Diagnostic signal	At the Boot-Up	1590	1600	1610	ms
_	Deserves time	ON-OFF ILOAD=100mA		20	30	us
τ	Response time	OFF-ON ILOAD=100mA		50	100	us

MECHANICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IP	Protection grade	-			IP67	
Out	Output configuration	-		PNP		
Lc	Length tolerance (cable 3x0.5mm ²)	-		± 20		mm


RELIABILITY PARAMETERS


Symbol	Parameter	Conditions	Value	Unit
MTTF	Mean Time To Failure	30°C, 24V	103	Years
DC	Diagnostic	At the Boot-Up	-	-
S	Structure	-	Not redundant	-

MECHANICAL DIMENSIONS

The dimensions are expressed in mm, tolerance ±0.1mm.

OUTPUT CONFIGURATION

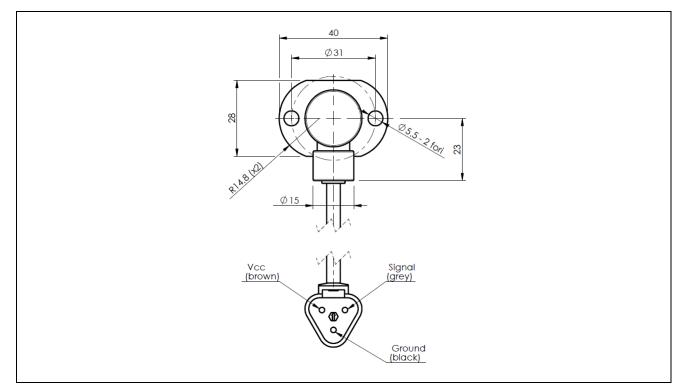


Figure 2 – OIS25-DT-CE03 configuration

REGULATORY COMPLIANCE TABLE

Reference norma-	Description	Test Type	Status
ISO13766 cl. 5.6	Earth moving machinery: broadband and narrowband emissions from ESA	Emission	pass
ISO13766 cl. 5.6	Earth moving machinery: immunity of ESA to electromagnetic radia- tion	Emission	pass
ISO13766 cl. 5.8-5.9	Immunity of ESA to electromagnetig radiated, bulk current injection, electrostatic discharge	Immunity	pass
EN 60068-2-6	Sinusoidal vibration test	Environmental test	pass
EN 60068-2-27	Shock test	Environmental test	pass
ISO 7637-2	Road vehicles - Electrical disturbances from conduction and coupling. Part 2: Electrical transient conduction along supply lines only	Immunity	pass
ISO 16750-2	Road vehicles - Environmental conditions and testing for electrical and electronic equipment. Part 2: Electrical loads	Immunity	Pass†
EN 60529	Degrees of protection provided by enclosures	Dust and water protection	IP67

Table 1 – Compliance table

 $\ensuremath{ \dagger}$ Load Dump pulse and Cranking pulse only.

ΟΡΤΟΙ

Application circuits

RESISTIVE LOAD

A typical output load is a lamp. For such resistive loads no precautions shall be taken: the output stage is protected against reverse of polarity, short circuit and temperature. The power absorbed by the output stage is equal to $R_{DSON} * I_{load}$.

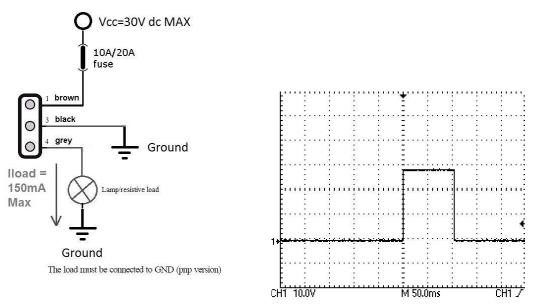


Figure 3 – Resistive load connection and V_{OUT} transition graph

INDUCTIVE LOAD

Inductive loads are described by inductance L and resistance R. At switch ON, the inductive load causes a slow current ramp up, based on the time constant τ =L/R. At switch OFF, due to inductance, the current attempts to continue to flow in the same direction, which causes the load voltage to invert.

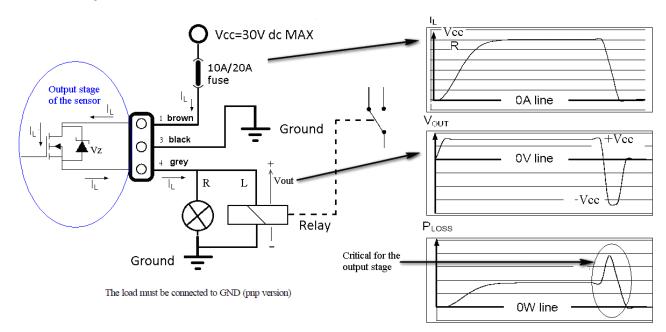
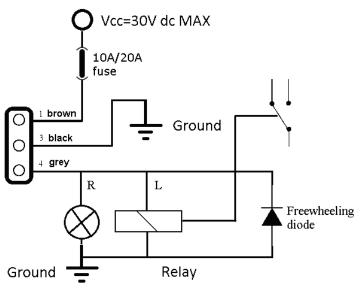



Figure 4 – Inductive load connection without protection

In this case, depending on the supply voltage and on the time constant, there is a real risk to break the output stage of the sensor. The output stage is composed of a logic stage, a power mosfet and a zener diode: the diode protects the output against overvoltages. If the V_{DS} of the output stage during the transitory becomes very high (double the Vcc value) for long period, it can destroy the mosfet or the zener protection diode inside the output stage.

In order to avoid this possible situation, the use of a freewheeling diode in parallel to the load is recommended.

The load must be connected to GND (pnp version)

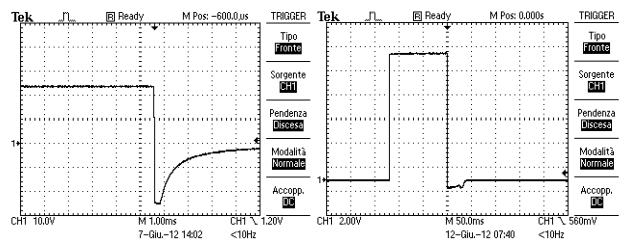


Figure 6 – V_{OUT} transitions without and with freewheeling diode

Load dump considerations

Load dump means the disconnection of a powered load. It can cause large voltage spikes from the inductive generator(s).

In automotive electronics, it refers to the disconnection of the vehicle battery from the alternator while the battery is being charged. Due to such a disconnection of the battery, other loads connected to the alternator see a surge in power line.

Load dump may occur as a result of cable corrosion, poor connection or of intentional disconnection with the engine running.

The pulse shape and parameters for an alternator with no centralized load dump suppression (Chap. 4.6.4 Test A ISO16750-2 2010.) are given in Figure 7 left side. The pulse shape and parameters for an alternator with centralized load dump suppression (Chap. 4.6.4 Test B ISO16750-2 2010) are given in Figure 7 right side.

The OIS25 is protected against load dump disturbs (see Chap. 4.6.4 ISO16750-2 2010) at 24V: the load dump amplitude is suppressed (clamped) by the addition of two limiting devices, which preserve the electronic from these destructive pulses.

Parameter	Туре	of system	Minimum test requirement	
Farameter	$U_{\rm N}$ = 12 V	$U_{\rm N} = 24 \ {\rm V}$		
U _S ^a V	$79 \leqslant U_{ m S} \leqslant 101$	$151 \leqslant U_{ m S} \leqslant 202~ m V$		
R _i ^a Ω	$0,5\leqslant R_{i}\leqslant 4$	$1 \leqslant R_i \leqslant 8$	10 pulses at intervals	
^t d ms	$40 \leqslant t_{d} \leqslant 400$	$100 \leqslant t_{\rm d} \leqslant 350$	of 1 min	
^t r ms	$10\begin{pmatrix} 0\\-5 \end{pmatrix}$	$10\left(\begin{smallmatrix}0\\-5\end{smallmatrix}\right)$		

Figure 7 – Load dump typical waveform at 24V: test A (unsuppressed) and test B (suppressed)

Diagnostic

At the boot-up, the sensor enters automatically in diagnostic mode and, for the first 2.2 s the OUT pin is used as signalling output.

The implemented features can diagnose the functioning of:

- the logic unit
- the output stage
- the sensor module.

In case of failure of at least one of this function, the sensor stops working and the results of the diagnostic functions are stored in EEPROM (the EEPROM can be read only by the producer).

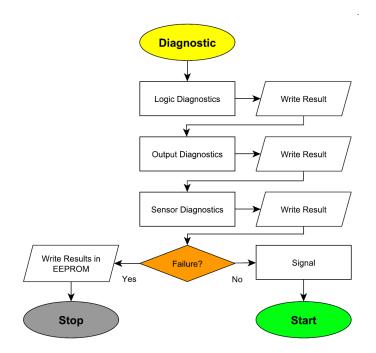
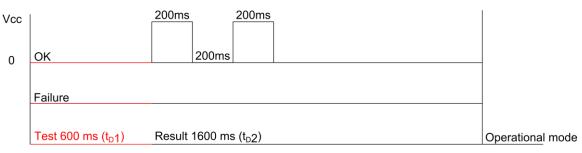


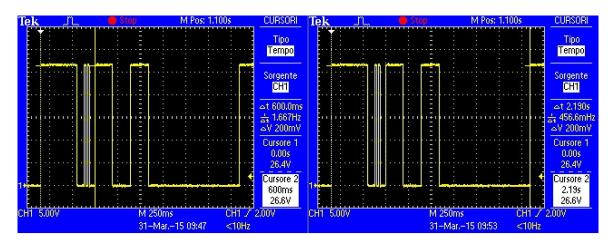
Figure 8 – Diagnostic flow chart

Note: it is important to avoid the shut down of the sensor during the diagnostic phase. A sudden disconnection of power may cause a wrong diagnosis and, in this case, a new boot up/restart is required.

Note: in order to function properly, the diagnostic must be started only when the sensor is positioned within its cylinder.

SIGNAL


Initially, the system takes 600 ms for the initialization and for the processing of the diagnostic functions. Successively, the sensor functioning state is communicated by means of a 1.6 seconds signal.


The signal is composed by 3 transitions of the duration of 200 ms each (ON-OFF-ON) and by a successive OFF state of the duration of 1 s. At the end of the signal, the sensor enters in operational mode.

In case of failure of any of the diagnosed parts, the output remains OFF, excluding the operational mode.

<u>Note:</u> the first 600 ms of the period of 2.2 s are not significant for the state signalling function. During this time the output changes are caused by the setup phase of the microcontroller and execution of the diagnostic functions.

Diagnostic

LOGIC UNIT

The sensor uses the EEPROM memory embedded in the microcontroller to save some functional parameters. The most important parameter is the gain value of the optical sensor which is set during the calibration phase. To ensure the consistency of the data, the gain value is combined with a 5 bytes hex code and the sequence so obtained is processed to calculate the CRC-8 value (CCITT polynomial).

EEPROM			
Address	Value		
0x00	Factory Parameters		
0x01	"		
0x02	"		
0x03	"		
0x04	"		
0x05	"		
0x06	Sensor Gain		
0x07	Hex Code		
0x08	"		
0x09	"		
0x0A	"		
0x0B	"		
0x0C	CRC-8		
0xFD	Logic Fail		
0xFE	Output Fail		
0xFF	Sensor Fail		

Figure 11 – EEPROM structure

At every boot-up, the sensor reads from EEPROM the gain value and the 5 bytes code, re-calculates the CRC-8 value and compares it with the CRC-8 value stored in EEPROM. If they are equal, the data stored in memory are valid and there is no memory corruption, otherwise a logic unit failure is reported.

Note: During the functioning, the execution of the software is monitored by a watchdog timer. In case of anomalous delays, the sensor resets itself and the diagnostic will be repeated.

OUTPUT STAGE

The output stage is diagnosed by means of a serie of sequential changes on the component (OFF-ON-OFF).

The output driver is controlled by the MCU by means of a digital pin; at every transition, thanks to an analog feedback pin, the MCU acquires 16 samples, it calculates the average value and it determines if the output stage is correctly responsive. The output state thresholds are the following:

- OFF < 1,5V.
- ON > 7,5V.

If all the transitions were positive it means that the output stage works correctly, otherwise an output stage failure is reported.

Figure 12 shows the output stage diagnostic and the time duration of one (left) and five (right) transitions.

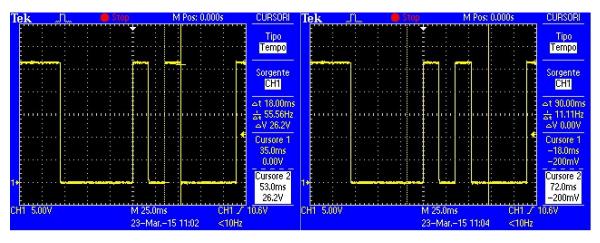


Figure 12 – Output stage diagnostic detail – Oscilloscope

SENSOR MODULE

The sensor module is represented by a light emitting diode, a photo receiver and an amplifier. The functioning of the input stage is tested analyzing the sensor response with different gain values. Thanks to a special algorithm, based on gain variations, it is possible to test the correct functioning of every component. If one of them does not respond as expected, a sensor module failure is reported.